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A New Method for Deriving Steady-State Rate Equations Suitable for Manual or
Computer Use

By KEITH J. INDGE
Department ofBiochemistry, University ofManchester Institute ofScience and Technology,

Manchester M60 1QD, U.K.

and ROBERT E. CHILDS
DepartmentofObstetricsand Gynaecology, UniversityofManchester,

St. Mary's Hospital, Manchester M13 OJH, U.K.

(Received 7 November 1975)

A schematic method for the derivation of steady-state enzyme rate equations by using the
Wang algebra is described. The method is simple, easy to learn and offers a substantial
decrease in analytical effort over previously published algorithms. Being essentially an
algebraic procedure the method can be readily computerized. Computer programs in
BASIC and ALGOL languages have been deposited as Supplementary Publication
SUP 50065 (19 pages) at the British Library (Lending Division), Boston Spa,
Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the
terms indicated in Biochem. J. (1976), 153, 5.

The existence of a number of schematic methods
for the derivation of steady-state rate equations
for enzyme mechanisms (King & Altman, 1956;
Volkenstein & Goldstein, 1966; Fisher & Schulze,
1969; Fromm, 1970; Orsi, 1972; Seshagiri, 1972)
reflects the interest ofenzymologists in the solution of
steady-state kinetic problems. The schematic method
of King & Altman (1956) is used widely, although it
is well known that their procedure becomes unwieldy
with complex mechanisms (Orsi, 1972; Volkenstein
& Goldstein, 1966). These difficulties inherent in the
King & Altman (1956) algorithm are largely circum-
vented by generating the valid King & Altman (1956)
patterns systematically by using the method of
Lam & Priest (1972), but the procedure remains
laborious, particularly when the mechanism contains
irreversible steps. In such cases only a relatively
small fraction of the valid King & Altman (1956)
patterns are permissible combinations of reaction
steps.

Topological graph theory is the basis of the algor-
ithm used by Volkenstein & Goldstein (1966). Their
method is more efficient than that of King & Altman
(1956), but in some respects it is difficult to apply
(Fromm, 1970) and requires considerable practice.
A simple new algorithm is presented here which

has the merits of being purely algebraic, and as such
is easy to program for a digital computer.
Moreover, apart from the unavoidable tedium,
complex mechanisms are solved manually as readily
as are simple kinetic mechanisms. In this method
we generate the denominator of the rate equation,
from which the appropriate numerator terms are
then selected.
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Algorithm Description
The new algorithm can be considered as an exten-

sion of the Lam & Priest (1972) method. Lam &
Priest (1972) represent the enzyme mechanism
as a non-oriented connected linear graph, from which
they generate the valid King & Altman (1956)
patterns, or trees by applying the Wang algebra
(Duffin, 1959) and alphanumeric multiplication.
Here we apply similar manipulations, but to a
directed graph (Seshu & Reed, 1961), i.e. to the
enzyme mechanism as written.
The Wang algebra states that the sum or product

of identical constants is equal to zero.

x-x=0 forallx
x+x=0 forallx

Alphanumeric multiplication is simply a concate-
nation of the elements multiplied, e.g.

(12+34)(56+78) = 1256+1278+3456+3478

The following steps are used in deriving the
steady-state rate equation.

1. Write down the reaction mechanismn including
all rate constants and their directions in graphical
form.

2. Circle (n-1) nodes (i.e. enzyme forms), where n
is the number of nodes in the mechanism. The result
is independent of the node that is onitted. (However,
selection of the node omitted can simplify the
solution by eliminating the possibility of certain
cycles arisimg.)

3. List separately the rate constants cut by each of
the (n-1) circle;s
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4. List also all combinations of pairs of rate con-
stants which leave each individual node of the graph.
These are forbidden combinations of rate constants.

5. By using the Wang algebra and eliminating the
forbidden combinations listed in step 4, multiply
alphanumerically the listing obtained in step 3.

6. The product from step S is the denominator of
the rate equation which is sorted into nodes, i.e.
expressions or determinants for each enzyme form.

7. Node sorting, e.g. for enzyme form EX,, is
accomplished by selecting those terms in the
denominator expression that do not contain rate
constants directed away from EX1.

8. Assemble the rate equation in the usual way
(King & Altman, 1956; Volkenstein & Goldstein,
1966).
When expanding the steady-state solution in step 5

it is convenient to manipulate only the subscripts of
the rate constants, and to omit any substrate or
product concentrations associated with particular
rate constants. These are readily inserted later
(step 8) to complete the solution.

Two further shorthand devices aid the calculation.
One is to separate the elements of the arrays by
commas, it being understood that the completed
denominator expression is the sum of these
elements. A second device is to express rate constants
of the form k_L as x'. Combinations such as xx'
would be eliminated from the solution by the Wang
summation rule, since they represent cycles, but such
expressions are more readily recognized and dis-
carded during step 5 if this convention is used, i.e.
xx' = 0 for all x.

Application of the algorithm is illustrated in
detail by the solution of the trivial Uni Uni
mechanismE+A=EA=EP=E+P shown in Scheme
1. In Scheme 2 a more complex schematic mechanism,
representing for example a random Uni Bi reaction
or a random-substrate-addition, ordered-product-
release Bi Bi reaction, is shown. The solution is not
developed beyond step 5, although those terms
which constitute the determinant of node 2 (not 2
or 1 ) are underlined as an example of node sorting.
Scheme 2 demonstrates the relative simplicity of the

Scheme 1. The algorithm as applied to a Uni Uni mechanism

EP

Step 4 Forbidden combinations
13'; 1'2; 2'3

Step 3 (1, 1', 3, 3')(1, 1', 2, 2')
Step 5 Multiplier (exclusions)

1 (3')
1'(2)
3 (2')
3'(1)

Step 7 Node selection
Node E (not 1 or 3')
Node EA (not 1' or 2)
Node EP (not 2' or 3)

Rate v = (k+3EPJ-k-3[El[P])[EoJ
[El]+ [A]+ EP]

Product
12, 12'
1'2'
13, 1'3, 23
1'3', 23', 2'3'

1'2', 1'3, 23
12', 13, 2'3'
12, 1'3', 23'

(k+lk+2k+3[A]-k-l k_2k-3[P]1)[F-0
k-lk.2+k_lk+3+k+2k+3+ [AJ(k+lk_2+k+lk+3+ k+j k+2)+ [P](k-2k-3+k-lk_3+k+2k3)
where VEoJ= [El+[EA]+[EPJ
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Scheme 2. Application ofthe algorithm to a schematic mechanism

0
k+2

k-2

k\-3 k-4 //

k-6 Q

k+6 k k+5

0y

Forbidden combinations

13
1'2
2'4'
4'5
2'5
3`4
16'
36'
5'6

Step 3 Omitting node 1 (see text)
(2, 2', 4, 4', 5, 5') (1, 1', 2, 2') (3, 3', 4, 4') (5, 5', 6, 6')

Step 5 M = multiplier, relevant exclusions in parentheses
P = product after Wang algebra

M
2 (1')
2'
4
4'(2')
5(2')
5'

M
5 (2', 4')
5'

6'(1, 3)

P M
12, 3 (1)
12',1'2',
14, 1'4, 24, 2'4, 3'(4)
14', 1'4', 24',
15, 1'5, 25, 4
15', 1'5', 25', 2'S'

4'(2', 5)

p
1'2'3, 1'34, 234, 2'34, 1'34', 234', 1'35,
235, 1'35', 235', 2'35',
123', 12'3', 1'2'3', 13'4', 1'3'4', 23'4', 13'5,
1'3'5, 23'5, 13'5', 1'3'5', 23'5', 2'3'5',
124, 12'4, 1'2'4, 145, 1'45, 245, 145',
1'45', 245', 2'45',
124', 14'S', 1'4'5', 24'5'

p
1'345, 2345, 123'5, 1245,
1'2'35', 1'345', 2345', 2'345', 1'34'5', 234'5', 123'5', 12'3'5',
1'2'3'5', 13'4'5', 1'3'4'5', 23'4'5', 1245', 12'45', 1'2'45', 124'5',
1'2'36, 1'346, 2346, 2'346, 1'34'6, 234'6, 1'356, 2356, 123'6,
12'3'6, 1'2'3'6, 13'4'6, 1'3'4'6, 23'4'6, 13'56, 1'3'56, 23'56,
1246, 12'46, 1'2'46, 1456, 1'456, 2456, 124'6,
1'2'3'6', 1'3'4'6', 23'4'6', 1'3'56', 23'56', 1'3'5'6', 23'5'6', 2'3'5'6',
1'2'46', 1'456', 2456', 1'45'6', 245'6', 2'45'6', 1'4'5'6', 24'5'6'

method and shows a convenient way of setting out
the calculation.

It is an important point that by choosing to omit
node 1 in the calculation the possibility of cycles
arising is eliminated. If node 5 had been omitted
instead, then the cycles 123'4' and 1'2'34 each appear
twice in the solution. It is a property of the algorithm
that such combinations of rate constants (cycles) are
always duplicated in the solution and are thus
eliminated by the Wang algebra summation rule.
This property is also exploited in the computer
program to eliminate invalid cycles. With more
complex mechanisms it may be impossible to avoid
generating invalid cycles by an appropriate choice
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of the omitted node. Inspection of the problem,
however, shows where these will first occur and in
a manual solution they can be eliminated at that
stage. If this is not done then invalid cyclic terms
will be present in the final denominator expression
from step 5. In these cases we recommend that node
sorting is first carried out, since the duplicated
terms ofa particular cycle both segregate to one node,
where they are more readily identified.

Discussion

The method has been tested on some 20 kinetic
mechanisms containing up to nine nodes and 32
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rate constants. These were ms consisting
of linear unbranching chains of reaction steps with
from three to eight nodes, and random or branching
mechanisms. The latter included the seven random
mechanisms detailed by Plowman (1972), the random
Bi Bi mechanism, the two mnemonical enzyme
models of Ricard et al. (1974), the bivalent-1
carrier mechanism (Wong, 1965) and the peroxidase
mechanism proposed by Childs & Bardsley (1975).
In addition, a number of mechanisms representing
kinetic formulations ofthe allostericmodels ofAdair-
Koshland-Nemethy-Filmer (Koshland et al., 1966)
and of Monod-Wyman-Changeux (Monod et al.,
1965) studied by W. G. Bardsley & R. D. Waight
(unpublished work) were examined.

Except for the peroxidase mechanism, the rate
equations derived either manually or by computer
agreed with published solutions or with equations
derived by the Volkenstein &Goldstein (1966) method
or by the King & Altman (1956) algorithm. Four of
the solutions given by Plowman (1972) contain
minor errors. The rate equation for the proposed
mechanism of horseradish peroxidase (Childs &
Bardsley, 1975) was found to be incorrect. The
denominator of the rate equation given by them
contains only 301 terms of the total 386 terms which
comprise the correct solution. The necessary
corrections are detailed in Supplementary Publication
SUP 50065.
A rigid proof of the method such as that given by

Duffin (1959) and by Maxwell & Cline (1966) of the
Wang algebra procedure with non-oriented linear
graphs is not at present available.
A computer program which carries out the algor-

ithm presented here has been developed. BASIC
and ALGOL versions of the program as used on
Data General Corporation Nova 820 (with RDOS
disk system) computers have been deposited as

Supplementary Publication SUP 50065 at the
British Library (Lending Division), Boston Spa,
Wetherby, W. Yorkshire LS23 7BQ, U.K. The
deposited material includes examples of the use of
the computer programs.

We thank Professor B. R. Pullan and Dr. R. W. Foster,
Medical School, University of Manchester, for the use of
the computers. R. E. C. thanks the Medical Research
Council for financial support.
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